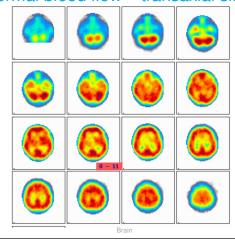
Nuclear medicine in neurology and psychiatry

Nuclear medicine - memo

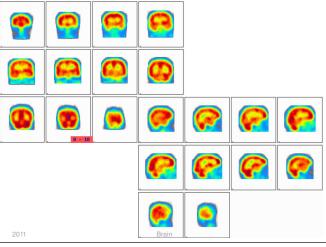
- · Functional imaging
 - limited anatomical info
 - but important details in processes of
 - blood flow
 - · liquor circulation
 - receptor distribution (molecular level)
 - metabolic activity of tumors, other cerebral areas (molecular level)
- · New hybrid devices: SPECT-CT, PET-CT
 - anatomy + function at the same time

2011 Brain **2**

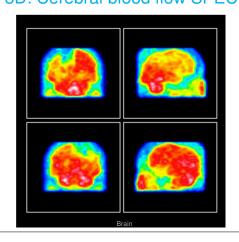
Study types


gamma emitters SPECT radionuclide - radiopharmaceutical	positron emitters PET radionuclide - radiopharmaceutical
^{99m} Tc-HMPAO	¹⁵ O-H ₂ O
^{99m} Tc-MIBI	¹¹ C-methionine
	¹⁸ F-FDG
¹²³ - iodobenzamide	¹⁸ F-fluoro-DOPA
^{99m} Tc-WBC	
^{99m} Tc-DTPA	
	SPECT radionuclide - radiopharmaceutical 99mTc-HMPAO 99mTc-MIBI 123 _ iodobenzamide 99mTc-WBC

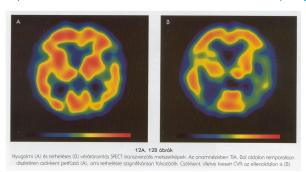
Indications


- Perfusion studies:
 - Dementias
 - Vascular disorders (stroke, TIA)
 - Epilepsy
- Metabolic studies:
 - Tumors
 - Epilepsy
- Receptor studies:
 - Parkinson's disease, schizophrenia
- Liquor studies:
 - hydrocephalus
 - liquorrhoea

2011 Brain **4**


Normal blood flow - transaxial slices

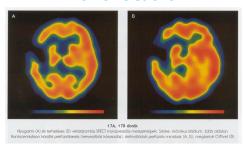
Normal blood flow – coronal and sagittal slices



3D: Cerebral blood flow SPECT

Brain stress test

Response to acetazolamide: cerebrovascular reserv capacity


before after

Brain 8

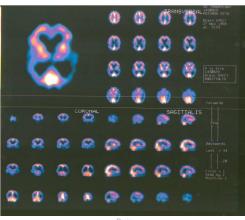
2011

Brain stress - Diamox test

chronic stroke

before after

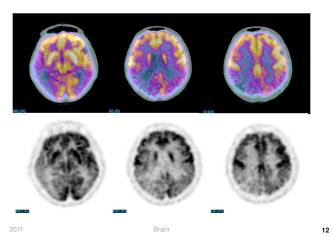
2011 Brain


Dementias

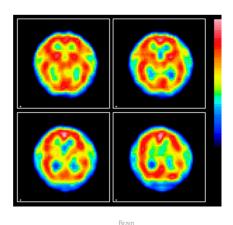
- Alzheimer's:

- decreased blood-flow: temporal, parietal, later frontal, on both sides (fronto-temporo-parietal)
- multi-infarct:
 - focal reductions, sometimes related to arterial territories
- non-Alzheimer:
 - frontal lobe dementias (incl. Pick's disease): personality changes

2011 Brain **10**


Alzheimer's disease - SPECT

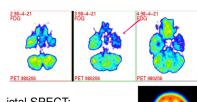
Brain


11

Alzheimer's disease - FDG-PET/CT

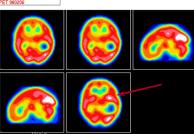
Multi-infarct dementia

2011

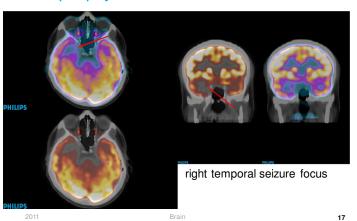


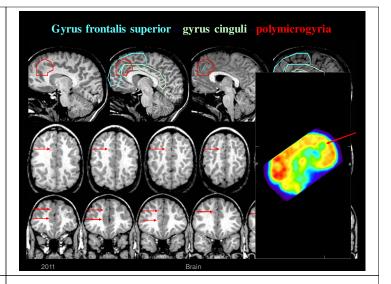
Frontal dementia

Vascular diseases - a. cerebri ant. occlusion



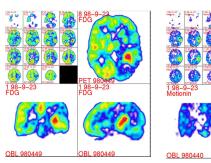
Epilepsy

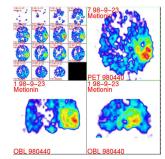

interictal PET: seizure focus have reduced glucose metabolism


ictal SPECT: up to 300% increase in rCBF

2011

Epilepsy – interictal FDG-PET/CT

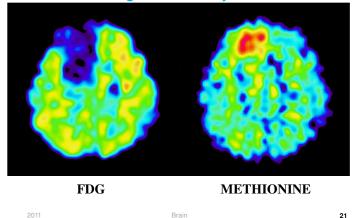

Tumors

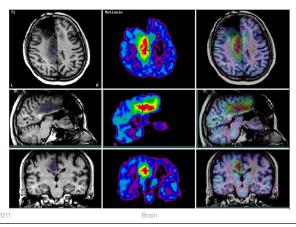

grade (glucose metabolism):

high grade: increasedlow grade: decreased

- how far does it extend into surrounding normal tissue
- heterogenity

Tumors - high grade glioma

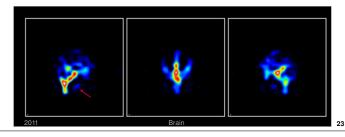



11C-methionine: defines the extent of tumors, but cannot reliably separate low from high grade gliomas

2011 Brain **19** 2011 Brain **20**

Low-grade astrocytoma

Low-grade recidive glioma

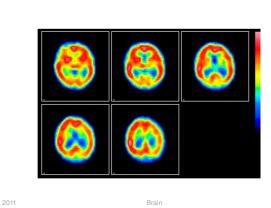


Liquor flow investigations

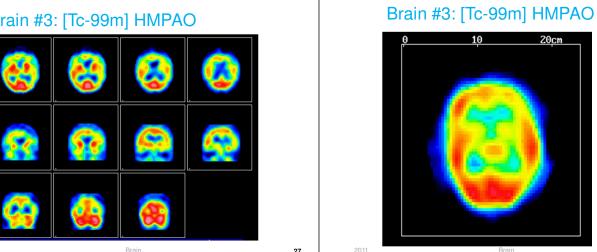
- 99mTc-DTPA: lumbal or cysternal injection
- planar camera and/or SPECT after 1, 2, 6, 12, 24 h

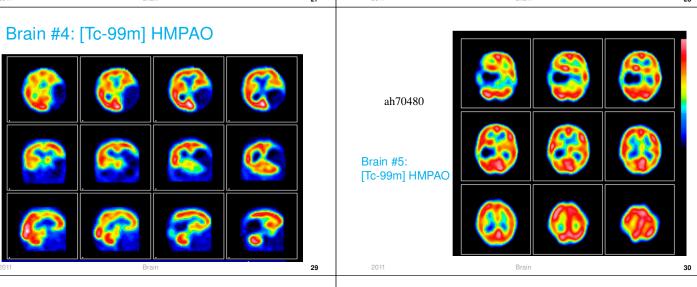
Liquor leakage: rhinorrhea, otorrhea, shunt assessment

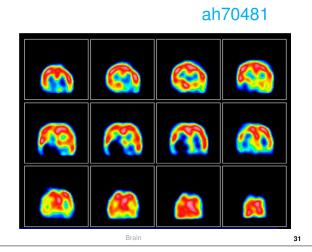
Rhinorrhea:

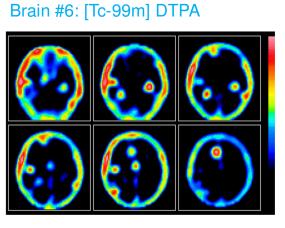


Brain: examples


- · Which function is imaged?
- Where can you find abnormal increase or decrease in the activity?
- · What could have caused the abnormality?


2011 Brain **2**0


Brain #1: [Tc-99m] HMPAO Brain #3: [Tc-99m] HMPAO Brain #3: [Tc-99m] HMPAO



Brain #2: [Tc-99m] HMPAO

2011 Brain **32**