Radionuclide therapy

The administration of open radionuclides for therapeutical purposes. The radiopharmaceuticals get **right to the cells** to be destroyed, and act there locally.

Generally beta- (rarely alpha-) radiating nuclides are used, as beta radiation reaches only a small neighborhood of its source.

Most common aims of radionuclide therapy:

- · Intracavital therapy
- Radioimmunotherapy
- Pain-killing therapy of bone metastases
- Radioiodine therapy of hyperthyreosis
- Radioiodine therapy of thyroid carcinoma and its metastases

2011 RN therapy

metastases

Radiosynoviorthesis

2011 RN therapy

Intracavital therapy

The injection of radionuclides right into some body cavities (that is not through the bloodstream or lymphatic drains).

Synovium

Indication: Chronic synovitis

Mechanism: Irradiating the cells of the synovial membrane decreases fluid production.

- Pleura
- Peritoneum
- · Intrathecal therapy
- · Cvsts

Colloidal radiopharmaceuticals are administered,

labeled by: 186Rhenium, 169Erbium, 90Yttrium, 32Phosphor, 198Gold

2011 RN therapy

2011 RN therapy

Radioimmunotherapy:

with labeled (monoclonal) antibodies, against various tumor-antigens

Administration: Generally i.v.

peritoneum: intraperitoneal infusion

Radionuclide: lodine-131

Lutetium-177

- Problems:
- Bonds to and mostly effects the surface of the tumor
- Short period
- HAMA ("human anti-mouse antibody") is produced
 not repeatable.

2011

RN therapy

Pain-killing therapy of bone metastases

Radionuclide	T _{1/2} (days)	Energy
⁸⁹ Sr	50.5	1.49 MeV
¹⁸⁶ Re	3.78	1.07
⁹⁰ Y	2.67	2.28
¹⁵³ Sm	1.95	0.81

2011 RN therapy 6

Pain-killing therapy of bone metastases :Sm-153-Multibone

Radioiodine therapy of thyroid carcinoma and its metastases

RN

2011

RN therapy

Palliative therapy of bone metastases

• Rhenium-186 HEDP

2011

- Strontium-89 Metastron
- Yttrium-90 "Multibone"

Dose calculation schemes

Method:	Thyr. size	Max. uptake	Elimination
Fixed dose			
For unit mass			
Absorbed dose			

"The aim of treatment with ¹³¹I is to achieve a **nonhyperthyroid** status"

"The **individual calculation** approach seems advisable in patients <45 years of age, and especially in children in whom radioiodine therapy is under consideration"

(EANM Guideline)

2011 RN therapy 10

Calculation of radioiodine activity for the therapy of hyperthyreosis

RN therapy

2011 RN therapy 11

Default values of planned doses Graves disease: Toxic (multi)nodular goiter: Without nodes: 70 Gy For the whole thyroid: 150 Gy

Mass estimation: lobes separately

$$m = (h_b * A_b + h_j * A_j) * 0.4$$

$$\frac{absz(h_b - h_j)}{h_b + h_j} \ge 0.2$$

2011 RN therapy

Mass estimation: node only

$$m = 0.436 * A^{1.5}$$

With nodes: 100 Gy

For the nodule: 350 G

2011 RN therapy 14

Volume estimation with ultrasound

(a) Supposing ellipsoid

$$V = k * a * b * c$$

where exactly: $k = \pi/6 = 0.524$ approximation: $k \approx 0.5$

c = b or c = 0.8*b

(b) Summing slice areas $V = \sum_{i} A_{i} * \Delta h_{i}$

Restoration filter on normal image

2011 RN therapy

Restoration filter on abnormal image

